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Abstract. The critical relarotion of the magnetization in a two-dimensional king model with 
quenched random nonmagnetic impurities has been studied by numerical simulation. A squared 
lattice of size 4M2 with spin concentrations p = 1.0; 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7 was 
considered. The dynarmcal critical exponent 2 wm determined by the Monte Carlo method 
combined with the dynamicd renormalintion group method. The following values were received 
for z ( p ) :  i(1) = 2.2450.07,~(0.95) = 2.2450.06, ~ ( 0 . 9 )  = 2.24i0.06. 210.85) = 2.38i0.05, 
~(0 .8)  = 2.51 0.06, ~(0.75) = 2.66 i 0.07 and ~(0 .7 )  = 2.88 f 0.06. A singular dynamic 
scaling behaviour with 2: = A'I In(p- p J  4.8' w3s found for systems with spin concentrations 
p 4 0.85 ne= the percolation threshold pE, where A' = 0.56 5 0.07 and B' = 1.62 & 0.07 are 
temperature-independent constants. 

1. Introduction 

The dynamic scaling hypothesis states [l] that as the temperature T of a system approaches 
the critical temperature T, the relaxation time r and the corresponding thermal correlation 
length 6~ are related through the generalized dynamical scaling relation 

In r = f(ln(T) (1) 

where f ( x )  is a generalized homogeneous function of its argument x .  In most of the critical 
phenomena studied so far r follows the relation (1) with f ( x )  3 z x ,  where the temperature- 
independent constant z is called the dynamic exponent. As a result as T -+ T, the system 
is  characterized by a critical slowing of the relaxation time with 

where ur is the critical exponent for the correlation length. The numerical value of z 
depends not only on the space dimensionality d of the system and on the symmetry of the 
order parameter but also on its dynamics. The dynamic universality class to which a system 
belongs depends crucially on the conservation laws of the order parameter and other slow 
modes [I] .  Non-dissipative couplings between the order parameter and slow modes can 
determine the critical dynamics of such a system and, consequently, the numerical value of 
z. In this paper we are concerned with the nature of dynamic universality in a particular 
critical phenomenon in a class of random magnetic systems. 

Investigations [Z] have shown that quenched random impurities change the properties of 
magnetic systems, in which the heat capacity in the 'pure' state diverges at the critical point 
with exponent ciPure > 0. Only systems with an effective Hamiltonian which is isomorphic to 
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the Ising model near the critical point satisfy this criterion. Renormalization group analysis 
using the &-expansion [3,41 has revealed that the critical behaviour of the disordered king 
model is characterized by a new set of critical exponents, with values which do not depend 
on the concentration of point impurities in the region cimp << 1 - pc ,  where pc  is the spin- 
percolation threshold. The equilibrium critical behaviour of dilute magnetic materials was 
analysed in [5,61, and the dynamic critical behaviour was analysed in the work of one of 
us [7], directly for three-dimensional systems. The experiment in [SI confirms the fact that 
the static critical exponents for impurity systems are different from their values for pure 
magnets and the experimental results agree well with theoretical predictions. 

Of particular interest to researchers are dilute low-dimensional magnetic materials which 
can be described by the two-dimensional Ising model. Since the exponent for the specific 
heat in the pure model is zero, the effect of disorder caused by an impurity becomes a 
secondary factor. A detailed inspection of this case [9, IO] has led to the conclusion that the 
impurity affects only the behaviour of the specific heat and that the other thermodynamic 
and correlation functions undergo no change in  critical behaviour. A field-theoretical 
consideration [7] showed that the critical relaxational dynamics of dilute two-dimensional 
Ising-like magnets in the region of impurity concentrations cimp << 1 - pc  is the same as the 
dynamics of the pure model and is characterized by the exponent z = 2.277. However, the 
question which remains unanswered is whether the critical exponents of disordered systems 
are universal, i.e. independent of impurity concentration up to the percolation threshold, or 
whether there exists a line of fixed points that determines a continuous change in the critical 
exponents with concentration. 

The critical behaviour of disordered systems in the region of high-impurity 
concentrations approaching the percolation threshold is particularly noteworthy. It has been 
suggested in several works [ I  1-13] that the standard form of dynamical scaling relation (1) 
with f ( x )  zx and universal exponent z is violated when there is an impurity concentration 
in the percolation region. It has been suggested that a singular dynamic behaviour is realized 
for a percolation concentration of impurities with a scaling relation of the form (1) with 
f ( x )  = AxZ + B x  + C. Then a temperature-dependent effective dynamic exponent z can 
be introduced: 
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z - i3 z = A In <T + B (3) 
with z -+ CO as h. + 00 (T -+ 0, p = p c ) .  This form of the exponent z leads to an 
explanation for the anomalously large value which has been measured for this exponent in 
Rbz (Mgo.41Coo.59)F4 during neutron scattering [14]. At the present time there is evidence 
from Monte Carlo simulations [15-181 supporting the quadratic form of the scaling function 
f ( x )  instead of the linear form. 

In this work we report on a numerical simulation by the Monte Carlo method of the 
critical dynamics of the two-dimensional king model, both in the ‘pure’ case and for spin 
concentrations p = 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7. This investigation of the critical 
dynamics of disordered systems for a wide range of impurity concentrations might possibly 
provide an answer to the question about the range of impurity concentrations where the 
dynamic exponent z is universal and where the dynamic effects of the singular percolation 
behaviour begin to develop. 

2. The model and Monte Carlo simulation 

The disordered king model is specified by a system of spins Si = &1 with concentration 
p. which are associated with N = p L 2  ( L  = 400) sites of a squared lattice. This gives 
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pZN possible configurations (SI with energy 

where the sum runs over nearest neighbours only, J characterizes the spin interaction energy 
and the p, are quenched site disorder variables with probability distribution 

P ( P d  = P S ( P i  - 1) + (1 - PMPi).  (5 )  

We consider a ferromagnetic system with J > 0. king model dynamics is customarily 
described by the conditional probability function Ps = &'(IS). t ) .  which satisfies Glauber's 
kinetic equation 

dp" = -Ps(t) W ( S  --+ S') + W(S' --f S)PS,(l) 
S' dt 

where W ( S  + S') is the probability of a transition of the system from a microscopic 
state given by the spin configuration IS) to a state with the configuration {S ' ] .  In order 
for the Markov process described by equation (6) to converge to the equilibrium state of 
a Gibbs ensemble with Ps = exp(-Es/kT), the detailed balancing condition must be 
satisfied: W ( S  + S')Ps = W(S'  + S)Ps,. This relation does not determine the function 
W unambiguously. The function W is usually chosen in the form of Metropolis's function 

exp(-AEss,/kT) for AEss > 0 
for A Ess, < 0 

W ( S  + S') = 

or Glauber's function 

W ( S  -+ S') = exp(-AEss,/kT)/[l+ exp(-AEs~t/kT)]. (8) 

The relation ( A ( t ) )  = rs A s P s ( f )  determines the dynamical evolution of the quantity As 
by means of the function Ps(t)-the solution of equation (6). 

The use of the Metropolis algorithm, which consist of a random choice for the spin 
Si and its flip with a probability specified by the function W in (7), makes it possible to 
immediately realize the dynamics of the Ising model with a relaxation of the magnetization 
ms( t )  = S ; / N  to the equilibrium value determined by the thermostat temperature 
T. The time scale f can be associated with the scale (St of successive configurations 
by assuming that N system sites are chosen randomly per unit time. This unit of time 
corresponds to the Monte Carlo spin step. In the simulation of the critical dynamics the 
initial state of the system is chosen with all spins parallel (ms = 1) and with a temperature 
equal to the critical temperature. The critical temperature T, for dilute magnetic materials 
is a function of the impurity concentration c,,, = 1 - p .  It decreases with increasing 
cjmp and vanishes at the threshold concentration rimp = 1 - pe. For a squared lattice of 
Ising spins pc 2: 0.59 and the T&) are equal to: T,(l) Y 2.2692, Tc(0.95) N 2.0883, 
Tc(0.9) Y 1.9004, Tc(0.85) N 1.7071, TdO.8) cz 1.5079, Tc(0.75) Y 1.2921 and 
Tc(0.7) N 1.0751 in units of J / k  [19]. 



1552 

3. The dynamical renormalization group method and its realization 

We have used here the Monte Carlo method, combined with the dynamical-renormalization- 
group method [ZO], to determine the dynamic exponent 2. For this, the system was 
partitioned into blocks, where a block bd of neighbouring spins was replaced by a single 
spin with its direction determined by the direction of most spins in the block. The redefined 
spin system forms a new lattice with magnetization mb. Let the magnetization of the initial 
lattice relax to some value ml over a time 11, and let the redefined system reach the same 
value ml over the time tb. Then by using two systems with block sizes b and 6' and 
determining the relaxation times tb and 4. of the block magnetizations mb and m y  to the 
same value m l ,  the dynamic exponent z can be determined from the relation 
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t b j t w  = (bjb')' 

or 

z = In(tb/fw)/ Io(bjb') (9) 

in the limit of sufficiently large b and b' + CO. 

We applied this algorithm to pure and impure systems with dimensions 4002 and the 
impurity concentrations presented above. The size of the system made it  possible to partition 
it into blocks with sizes b = 2, 4, 5, 8, 10, 16. 20, 25 and 40. The procedure for block 
partitioning the initial spin and impurity configurations was implemented on the basis of the 
criterion of spin connectivity. Thus a bd-dimensional block was considered to be a spin block 
and replaced by an effective spin oriented in a direction determined by the direction of most 
spins in the block if the block contained a spin cluster connecting opposite faces of the block. 
Otherwise, the block was considered to be an impurity block and replaced by an empty site 
in the renormalized lattice. For systems with p 2 0.9 a relaxation simulating procedure 
consisting of 1000 Monte Carlo steps per spin was performed for each system with 15-20 
runs with different impurity configurations over which the function mb(t )  was averaged. For 
systems with p = 0.85, 0.8, 0.75 and 0.7 the relaxational simulating procedure consisted 
of 2000, 4000, 8000 and 16000 Monte Carlo steps per spin, accordingly, with 30 runs 
for each system with different impurity configurations. Figures l(a)-(c) show plots of the 
initial and renormalized magnetizations mb(t ) ,  averaged over impurity configurations, with 
spin concentrations p = 1. 0.9 and 0.75, respectively, as functions of time. 

The computer modelling of the relaxation properties of a two-dimensional homogeneous 
Ising model, performed in [21], showed that near the critical temperature the change in the 
magnetization is characterized by an effective exponential dependence. Our analysis of the 
relaxation curves m ,  ( t )  at the critical temperature T,(p) revealed a power-law dependence 
m l ( t )  - t-' . The following values were obtained for the exponent a ( p )  with ml ranging 
from 0.8 to 0.67: a ( l )  = a(0.95) = 0.056 f 0.006; a(0.9) = 0.055 f 0.006; a(0.85) = 
0.050 f0.008; a(0.8) = 0.033 f 0.008; a(0.75) = 0.037 f 0.008; a(0.7) = 0.031 f 0.010. 
The well-known scaling relation for the magnetization 

m(h.6')  = 6'PtE(h/6'A) (10) 

where 0 = (T, - T ) / T ,  is the reduced temperature, h is the external magnetic field, and 
,3 and A are the critical exponents. can be generalized for the time-dependent case in the 
form 

m(h,  0, t )  = 6'PM(h/BA, t j r )  = 6 ' ~ M ( h f 0 A .  f /0-") = f - ~ t L " M ( h t A t z Y ~  6't'/'v 1 (11) 
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Figure 1. Initial ,ni md renormdized mi, magnetizations as functions of time for the pure Ising 
model (a )  and for a disordered king model with spin concentrations p = 0.9 (b)  and 0.75 (e). 
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using the asymptotic time dependence of the relaxation r - 101-z". Hence, for h = 0 and 
0 = 0, the power-law character of the relaxation is reflected in the form of the following 
equation 

V V Prudnikov and 0 N Markov 

According to Monte Carlo simulation results [I91 for the disordered two-dimensional king 
model ~/u=O.125fOo.0O5 ( p =  1.0,0.95,0.9);0.120+0.010(p=0.85);0.110f0.010 
( p  = 0.8); 0.100 zk 0.020 ( p  = 0.75). We used these values of ,!?/U and exponents 
n ( p )  = ,!?/zu and determined the next values of the dynamic exponent z ( p ) :  z = 2.23f0.33 
( p  = 1.0; 0.95); 2.27 & 0.34 ( p  = 0.9); 2.40 f 0.58 ( p  = 0.85); 2.56 0.72 ( p  = 0.8); 
2.70 f 1.13 ( p  = 0.75). Although the typical errors for a Monte Carlo study of disordered 
systems were made, when determining the exponents a ( p )  the small mean values of a ( p )  
led to a low accuracy in their relative values and therefore to low accuracy in values of the 
exponent z. 

In order to determine the values of the exponent z independently it is better to employ 
relation (9). However, the power-law character found for the relaxation of the magnetization 
at the critical temperature enabled US to employ, in contrast to [20,21], a different 
and, we believe, better-founded procedure for processing the curves for the renormalized 
magnetizations m&) 1221. Thus the mb( f )  curves plotted in a double logarithmic scale 
were approximated by the straight lines Inmh = kh Int  + nb by the least-squares method 
in intervals Amh corresponding best to a power-law variation of mb. Next, the coefficients 
kb were averaged and an average value k ,  was determined, after which the parameters nb 
of the straight lines In mb = k,, In f + nh were determined by extending the lines through 
the point of intersection with In mh = kh In f + nb at the centre of the intervals Amb. As a 
result, the formula for z becomes 

Sets of values of the exponent Zb corresponding to different values of b with b' = 1 were 
obtained using relation (13) (table 1). For impurity systems the renormalization-group 
transformation procedure reaches the proven asymptote of mb as a function of the block- 
partition parameter b at larger values of b than in the case of a pure system. For this reason 
we selected for the analysis the values of the exponent zb corresponding to b > 4 for the 
pure system and b > 5 ( p  = 0.95), b > 8 ( p  = 0.9), b > IO ( p  = 0.85), b > 16 ( p  = 0.8; 
0.75) and b > 20 ( p  = 0.7) for the impurity systems. The obtained dependence of z on b 
made extrapolation to the case b + 00 possible, assuming that Zb = zb=m+constant x b-'. 
The following results were obtained: for the homogeneous system z(1) z 2.24 f 0.07 and 
for the impurity systems ~(0.95) = 2.24f0.06, ~(0 .9 )  = 2.24f0.06, z(0.85) = 2.383~0.05, 
z(O.8) = 2.51 f0.06, z(0.75) = 2.6610.07, and ~(0.7) = 2.88k0.06. The lower accuracy 
in the values of the exponents z(l) and z(0.95) is conditioned by the wider set of Zb,  which 
we used for calculating the extrapolated values zhXm. However, the increase in errors for 
z ( p )  with p < 0.8 is connected to the increase in disorder in systems and a resulting 
increase in the number of impurity configurations involved i n  the averaging. Comparing 
the two sets of dynamic exponents calculated by different methods shows that they are in 
sufficiently good agreement with each other. However, the Monte Carlo method combined 
with the dynamical-renormalization-group method is preferable as it is characterized by a 
higher accuracy in the received values of the dynamic exponent z and independence of the 
static critical exponents ,!? and U. 
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Table 1. Values of the dynamic exponent z), obtained using formula (9) and the extrapolated 
values a,=- for systems with different spin concentrations p ,  

P 

b 1.0 0.95 0.9 085 0.8 0.75 0.7 
4 2.456 

&0.068 
5 2.454 2.439 

i0.061 f0.053 
8 2.401 2.394 2.433 

i0.047 f0.048 i0.042 
IO 2.357 2.366 2.417 2,413 

f0.036 f0.034 f0.034 10.040 
16 2.305 2.334 2.389 2.469 2.565 2.805 

i0.046 f0.026 f0.041 10.028 f0.048 f0.051 
20 2.285 2.291 2.332 2.461 2.557 2.803 2.954 

*0.031 f0.032 10.031 10.016 f0.042 10.056 f0.057 
25 2.242 2.252 2.269 2.385 2.541 2.188 2.942 

f0.029 i0.023 f0.032 f0.029 h0.035 10.054 50.048 
40 2.532 2.703 2.912 

i0.036 10.035 f0.053 

Zb=m 2.24 2.24 2.24 2.38 2.51 2.66 2.88 
f0.07 i0.06 10.06 f0.05 i0.06 10.07 *0.06 

4. Analysis of results and conclusions 

An analysis of the obtained values z(p) shows that the critical dynamics of a disordered two- 
dimensional Ising model with spin concentrations p > 0.9 and pure model are concerned 
with one class of dynamic universality characterized by the exponent z = 2.24 f 0.07. We 
note that this value agrees well with value z = 2.277 obtained by the field-theoretical method 
[7] and with results on critical dynamics of the pure two-dimensional king model of several 
other works: z = 2.22 f 0.13 [23], N 2.23 [24], 2.22 [13], 2.24 f 0.04 [25]. However, 
there are also other results with z =2.125f0.010 [26], 2.14f0.02 [21], 2.13f0.03 [27]. 

For systems with spin concentrations p < 0.85 an increase in the values of the dynamic 
exponent z with decrease in p was discovered. These changes in z(p) can be interpreted as 
the result of the crossover from pure and weak-disorder-type behaviour to percolation-type 
critical behaviour. It was found that the dependence of the dynamic exponent z on p for 
p = 0.7, 0.75, 0.8 and 0.85 is described well by a logarithm law 

z = A‘I In(p - pc)l + B’ (14) 

with A’ = 0.56 i 0.07 and B‘ = 1.62 f 0.07 (figure 2). The received dependence (14) can 
be compared with singular scaling dependence (3) for the effective dynamic exponent z at 
h N cp = to(p - pJ”p and A‘ = AV,, B’ = B + A Into, where vp is the critical exponent 
for percolation correlation length f,,. The use of known relations for the Ising model gives 
h/cp 2 .exp[ZJur (T-T , ) /kTT, ]asp - t  p,andT + T = ( p ) , t h e r e f o r e ~ e ~ u a I i t y t ~ ~ c p  
corresponds to the conditions of our computer simulations at T = T,(p) and p near p c .  A 
comparison with the results from Monte Carlo simulations of the temperature dependence 
of the relaxation time r at p = pc  ( A  = 0.62 * 0.12) [16] and the spin concentration 
dependence of 5 at p < pc ( A  = 0.48) [17] shows that the calculated numerical value of 
A = A‘/up = 0.42 f 0.07 at v p  = 413 agrees well with the results in [ 171. 
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1 F iyre  2. The dynamic critical exponent I plotted 
against Iln(p - pc)I. The straight line is the best 
quadntic fit for z(p) with the expression A'j In(p - 
PdI + E'. 

Thus, in the present paper the singular dynamic scaling behaviour for disordered systems 
near the percolation threshold was confirmed. It was shown that the percolation behaviour 
effects begin to be displayed in the dynamics of the two-dimensional king model at spin 
concentrations p < 0.85. In this phenomenon a common property of the disordered system 
dynamics is exhibited. In contrast to the static behaviour the disordered system dynamics 
characterized by other local conservation laws for impurity scattering of long-wavelength 
fluctations of the magnetization. In consequence, the impurities affect the critical dynamics 
more strongly than the static critical behaviour. 
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